

Infrastructure Systems Failure

It may be mentioned that the transportation facilities are essential for movements of goods and people, for economic progress and also have a post-earthquake importance in providing relief and quick movement of medical facilities. Their failure may result in losses several times the cost of their repair and reconstruction.

The Goals of the Site Assessments at These Locations:

4.Compare ground motion and structural response parameters from site specific earthquake analysis method with those from AASHTO response spectrum analysis method and provide preliminary guidance regarding selection of the analysis method at future sites.

5. Evaluate the modified site assessment techniques identified in the US60 study and establish a basis for using these modified techniques at other sites along designated emergency access routes.

6. Finally, a qualitative assessment of slope stability along the MP100/I-44/US50 corridor from Manchester to Gerald will be completed, as well as an assessment of evidence of previous earthquake activity (in the form of sand blows, prehistoric slope movement etc).

Geotechnical Engineering is Useful in (Cont.):

- a) For example, non-linear behavior of soil and strain dependence of shear modulus and damping have been studied extensively only since late sixties;
- b) Similarly, the liquefaction phenomena in soil and methods to predict liquefaction of sand have undergone significant changes in the last 40 years and
- c) some aspects of liquefaction of silts and clay are still in the preliminary stage of development,

9

although many sites with silts have liquefied in Turkey earthquake of 1999.

			10 % PE in 50 years	2% PE in 50 years		
	St. Fr (36.84	rancis River Site PN, 90.2°W)	0.158	0.643		
	Wahit (36.89	e Ditch Site N, 89.7°W)	0.196	1.343		
		B. (Dist
Probability of Exceedance	Magnitud e	Distance, R	Probabi Exceeda	lity of ince	Magnitud e Mw	Distance R (km)
Probability of Exceedance	Magnitud e Mw	Distance, R (km)	Probabi Exceeda	lity of nice	Magnitud e Mw	Distance R (km)
Probability of Exceedance	Magnitud e Mw	Distance, R (km)	Probabi Exceeda	lity of ince	Magnitud e Mw 6.2	Distance R (km) 40
Probability of Exceedance 10 % in 50 years 10 % in 50 years	Magnitud e Mw 6.4 7	Distance, R (km) 40 65	Probabi Exceeda	lity of mce 50 years 50 years	Magnitud e Mw 6.2 7.2	Distance R (km) 40 100
Probability of Exceedance 10 % in 50 years 10 % in 50 years 2 % in 50 years	Magnitud e Mw 6.4 7 7.8 7.8 7.8	Distance, R (km) 40 65 16	Probabi Exceeda 10 % in : 10 % in : 2 % in 50	lity of ince 50 years 50 years 0 years	Magnitud e Mw 6.2 7.2 6.4	Distance R (km) 40 100 10
Probability Exceedance of 10 % in 50 years 10 % in 50 years 2 % in 50 years 2 % in 50 years	Magnitud e Mw 6.4 7 7.8 8.0 9.0	Distance, R (km) 40 65 16 20	Probabi Exceeda 10 % in : 2 % in 50 2 % in 50	lity of ince 50 years 50 years 0 years 0 years 0 years	Magnitud e Mw 6.2 7.2 6.4 8.0	Distanc R (km) 40 100 10 40

5.2 Magnitudes and D ake analysis, (Herrma	istances nn, 2000)	for Sele	ected Earthquakes
a. St. Francis	s River Bi	ridge Si	te
Exceedance	Magintude	Distance, K	
	Mw	(km)	
10 % in 50 years	6.2	40	
10 % in 50 years	5 7.2	100	
2 % in 50 years	6.4	10	
2 % in 50 years	8.0	40	
b. Wa	hite Ditch	Site	
Probability of Exceedance	Magnitude	Distance, R	
	Mw	(km)	
10 % in 50 years	6.4	40	
10 % in 50 years	. 7	65	1
2 % in 50 years	7.8	16	1
2 % in 50 years	80	20	18

Table 8.1: Detail of Synthetic Ground Motion at theRock Base of Wahite Ditch Site with CorrespondingMaximum Peak Horizontal Ground Accelerationa. PE 10% In 50 Years

	Name (1)	Mw (2)	R (km) (3)	Max acc. at rock-base(g) (4)	Max acc. at soil-surface(g) (5)
	WD100101*	6.4	40	0.126	0.153
	WD100102*	6.4	40	0.119	0.152
	WD100103	6.4	40	0.136	0.127
	WD100104	6.4	40	0.121	0.144
	WD100105*	6.4	40	0.13	0.151
	WD100201*	7.0	65	0.124	0.185
	WD100202*	7.0	65	0.142	0.171
	WD100203	7.0	65	0.173	0.171
	WD100204	7.0	65	0.144	0.147
	WD100205*	7.0	65	0.166	0.180
MISSOURI SEE University of Science & Technology	Mw = Magnitude R =	Epicentral dista	nnce * Used	in further analysis	1

Name (1)	Mw (2)	R (km) (3)	Max acc. at rock-base(g) (4)	Max acc. at soil-surface(g) (5)
WD020101*	7.8	16	1.549	0.437
WD020102*	7.8	16	1.769	0.478
WD020103*	7.8	16	2.129	0.512
WD020104	7.8	16	1.996	0.415
WD020105	7.8	16	1.822	0.423
WD020201	8.0	20	1.442	0.440
WD020202	8.0	20	1.589	0.440
WD020203*	8.0	20	1.855	0.525
WD020204*	8.0	20	1.720	0.406
WD020205*	8.0	20	1.559	0.447
Mw = Magnitude F	R = Epicentral dist	ance * Used in	further analysis	

File Name	Max. acc. at rock-base EL. 106.0 (g)	Max acc. at soil-surface 307.2 (g)	EL	Max acc. at bridge abutment EL 301.2 (g)	Max acc. at bridge pier EL 269.9 (g)
WD100101*	0.126	0.153		0.153	0.139
WD100102*	0.119	0.152		0.151	0.127
WD100105*	0.13	0.151		0.151	0.120
WD100201*	0.124	0.185		0.185	0.169
WD100202*	0.142	0.171		0.170	0.146
WD100205*	0.166	0.18		0.180	0.157
		b. PE 2% ii	n 50) years	
File Name	Max. acc. At rock-base EL. 106.0(g)	Max acc. at soil-surface 307.2 (g)	EL	Max acc. at bridge abutment EL 301.2 (g)	Max acc. at bridge pier EL 269. (g)
WD020101*	1.549	0.437		0.440	0.430
WD020102*	1.769	0.478		0.482	0.512
WD020103*	2.129	0.512		0.514	0.522
WD020202*	1.589	0.44		0.446	0.466
OWNED020203*	1.855	0.525		0.527	0.538
WD020205*	1.559	0 447		0 449	0.444

Table 8.2: Detail of Peak Ground Motion Used at theSt.Francis River Site Rock Base, Ground Surface,Bridge Abutment and Pier

a) PE 10% in 50 years

Name	Max. acc. at rock-base EL. 149.8. (g)	Max. acc. at soil-surface EL. 341.8. (g)	Max. acc. at bridge abutment EL341.8 (g)	Max. acc. at bridge-pier EL 301.4 (g)
SF100103*	0.106	0.146	0.160	0.126
SF100104*	0.100	0.146	0.160	0.134
SF100105*	0.107	0.151	0.155	0.154
SF100201*	0.113	0.203	0.206	0.214
SF100202*	0.136	0.196	0.200	0.204
SF100205*	0.153	0.187	0.190	0.204

MISSOURI

Name	Max. acc. at rock-base EL. 149.8. (g)	Max. acc. at soil-surface EL. 341.8. (g)	Max. acc. at bridge abutment EL341.8 (g)	Max. acc. at bridge-pier EL 301.4 (g)
SF020101*	1.069	0.497	0.514	0.655
SF020103*	0.845	0.428	0.437	0.560
SF020105*	1.089	0.473	0.490	0.602
SF020201*	0.604	0.447	0.457	0.571
SF020203*	0.693	0.453	0.465	0.544
SF020205*	0.596	0.391	0.400	0.452

		Zones of S	oil Liquefaction		
]	PE10% in 50 years	PE 2% in 50 years		
Factor of Safety	M6.2	M7.2	M6.4	M8.0	
1.0	No	8.4 to 12.5	8.4 to 12.4 and 66 to 75	6 to 90	
1.1	No	8.4 to 12.5	6.0 to 23.5 and 66 to 80	6 to 110	
1.2	No	8.4 to 12.5	6.0 to 34.0 and 66 to 90	6 to 130	
1.3	No	8.4 to 12. 5	6.0 to 40.0 and 66 to 90	6 to 153	
1.4	No	8.4 to 12. 5 and 75 to 80	6.0 to 50.0 and 66 to 90	6 to 180	

Factor of		Depth of Soil Liquefy (ft)				
Surcey	PE 10% in 50 years	% in 50 years	PE 2% i	in 50 years		
	M6.4	M7.0	M7.8	M8.0		
1.0	No	120 to 130	20 to 201	20 to 201		
1.1	No	120 to 130	20 to 201	20 to 201		
1.2	No	120 to 130	20 to 201	20 to 201		
1.3	No	120 to 130	20 to 201	20 to 201		
1.4	No	120 to 130	20 to 201	20 to 201		

Displacement at top of abutment	PE 10% in	50 years	PE 2% in	50 years
	M6.2	M7.2	M6.4	M8.0
Sliding (m)	0.052	0.093	0.096	0.31
Rocking (m)	0.037	0.061	0.069	0.21
Total (m)	0.089	0.154	0.165	0.52
Significant Cycles	8	11	9	20
Displacement in 1-cycle	0.011	0.014	0.018	0.026

Displacement at top of abutment	PE 10%	in 50 years	PE 2%	6 in 50 years
	M6.4	M7.0	M7.8	M8.0
Sliding (m)	0.037	0.028	0.139	0.178
Rocking (m)	0.018	0.053	0.0513	0.064
Total (m)	0.056	0.080	0.190	0.242
Significant Cycles	9	10	18	20
Displacement in 1-cycle	0.007	0.008	0.011	0.012

Slope Stability of Abutment Fills

Seven cross-sections from the St. Francis River Bridge site were selected for slope stability analysis (Figure 5.5), as were seven from the Wahite Ditch Bridge site (Figure 5.6). At both sites, the crosssections represented the steepest site slopes. The cross-section data was then entered into the slope stability program PCSTABL5 using the pre and post processor STEDwin. The slopes were analyzed under static and pseudostatic conditions using the Modified Bishop Method. references.

Table 8.4: Soil Properties used for the Slop	e
Stability Analysis, St. Francis River Bridge St.	ite

Soil Chara	cteristics*			
Class	$\gamma_{moist} \left(pcf \right)$	$\gamma_{saturated}~(pcf)$	c (psf)	\$ (deg.)
CL	121.34	133.50	858	30
ML	106.00	122.50	450	34
SM	115.00	127.00	50	35
SP	134.90	141.90	0.0	40

* Soil characteristics obtained from slope stability procedures, Section (5.5.1)

Design Horizontal and Vertical Earthquake Accelerations in Slope Stability Analysis

Three sets of ground accelerations were selected for the St. Francis River Bridge site and the Wahite Ditch Bridge site based on the SHAKE91 analysis. Each set above used acceleration values for earthquakes with 2% and 10% exceedance probabilities in 50 years. The selected design horizontal accelerations were used in PCSTABL5 to represent pseudo-static earthquake conditions, for both low and high ground water (See Table 5.3).

97

Table 5.3: Design Horizontal and Vertical Earthquake Accelerations for Slope Stability Analysis a. Francis River Bridge Site Set 2 Set 1 Set 3 HGA VGA HGA VGA HGA VGA Earthquake 10% PE 0.135 0 0.135 ±0.048 0.012 ±0.090 2% PE 0.331 0 0.331 ±0.170 0.014 ±0221 **b. Wahite Ditch Bridge Site** Set 1 Set 2 Set 3 HGA HGA VGA HGA VGA Earthquake VGA MISSOURI 10% PE 0.123 0.123 0 ± 0.006 0.008 ± 0.082 2% PE 0.350 0 0.350 ±0.007 ±0.233 0.060 98

Table 8.5: Slope Stability Results for the
Francis River Bridge SiteSt.

	Factor of S	afety for Mo	ost Sensit	tive Pote	ntial Fai	lure Pla	ne	
	Cross-Section	A - A'	B – B'	C – C'	D –D'	E – E'	F – F '	G – G'
			Static					
	Low GW	2.63	2.76	2.88	2.71	2.52	1.93	3.96
	High GW	3.06	3.14	3.48	3.23	2.87	2.02	2.67
		Pse 10	eudo-Statio % PE in 5	c Set 1* 0 vears				
	Low GW (0.135)	1.73	1.74	1.82	1.79	1.59	1.41	2.60
	High GW (0.135)	1.61	1.68	1.78	1.72	1.64	1.23	1.74
		29	% PE in 50) years				
	Low GW (0.331)	1.31	1.10	1.17	1.18	1.08	0.98	1.71
	High GW (0.331)	0.93	0.97	1.01	1.00	0.94	0.74	1.08
	* Peak grou with the co	und acc mputer	elera progi 5.4	tion v ram <i>S</i> I.	alues SHAK	s calc <i>'E91</i> S	ulate Sectio	d on
SSOURI								10

i lancis	πινε	ΓΒΓΙ	age	Site,	, CO	Π Γ.	
	P: 10%	eudo-Stati % PE (HG	ic Set 2 A, VGA)				
Low GW (0.135,+0.048)	1.68	1.64	1.76	1.74	1.55	1.39	2.59
Low GW (0.135,-0.048)	1.77	1.75	1.87	1.83	1.62	1.43	2.62
High GW (0.135,+0.048)	1.55	1.61	1.71	1.66	1.54	1.19	1.64
High GW (0.135,-0.048)	1.67	1.73	1.84	1.77	1.63	1.26	1.75
•	2%	PE (HGA	A, VGA)				
Low GW (0.331,+0.170)	0.95	0.91	0.97	0.99	0.92	0.84	1.58
Low GW (0.331,-0.170)	1.28	1.26	1.33	1.32	1.20	1.08	1.82
High GW (0.331,+0.170)	0.70	0.74	0.78	0.78	0.74	0.57	0.88
High GW (0.331,-0.170)	1.10	1.14	1.20	1.17	1.09	0.86	1.25
	Ps	eudo-Stati	ic Set 3				
	10%	6 PE (HG.	A, VGA)				
Low GW (0.012,+0.090)	2.50	2.50	2.71	1.80	2.21	1.89	3.91
Low GW (0.012,-0.090)	2.57	2.61	2.81	1.95	2.24	1.89	3.74
High GW (0.012,+0.090)	2.89	2.98	3.29	3.08	2.74	1.95	2.50
High GW (0.012,-0.090)	2.87	2.94	3.25	3.02	2.70	1.91	2.62
	2%	PE (HGA	A, VGA)				
Low GW (0.014,+0.221)	2.39	2.37	2.58	2.49	2.14	1.88	4.06
Low GW (0.014,-0.221)	2.59	2.66	2.86	2.66	2.23	1.89	3.65
High GW (0.014,+0.221)	2.90	2.46	3.28	3.11	2.78	1.95	2.34
High GW (0.014,-0.221)	2.85	2.91	3.21	2.96	2.68	1.88	2.67
* 0 1			tion				hod

